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A PARALLEL VARIABLE METRIC OPTIMIZATION ALGORITHM

By Terry A. Straeter

Langley Research Center

SUMMARY

An algorithm is introduced which is designed to exploit the parallel computing or

vector streaming (pipeline) capabilities of computers with such advanced features. If p

is the degree of parallelism, then one cycle of the parallel variable metric algorithm is

defined as follows: first, the function and its gradient are computed in parallel at p dif-

ferent values of the independent variable; then the metric is modified by p rank-one

corrections; and finally, a single univariant minimization is carried out in the Newton-like

direction. Several properties of this algorithm are established in the paper. In addition,

the convergence of the iterates to the solution is proved for a quadratic functional on a

real separable Hilbert space; in fact, for a finite-dimensional space the convergence is in

one cycle when p equals the dimension of the space. Results of numerical experiments

indicate that the new algorithm will exploit parallel or pipeline computing capabilities to

effect faster convergence than serial techniques currently in use. In fact, the experi-

ments indicate that even when the computations are done serially, the new algorithm is

very competitive with the widely used Davidon-Fletcher-Powell technique.

INTRODUCTION

In order to solve optimization problems efficiently by using computers with parallel

computing or vector streaming (pipeline) capabilities, it is necessary either to develop

new algorithms or to induce a high degree of parallelism into existing techniques. It may

be that for these new computers many currently fashionable and serially efficient algo-

rithms will be replaced by new parallel techniques. For simplicity, hereafter the term

parallel is used to mean both parallel and vector streaming operations.

For a number of years it has been very popular and quite efficient to solve optimi-

zation problems on serial computers by the conjugate gradient (ref. 1) or variable metric

(refs. 2 and 3) methods. But, as Miranker points out in his survey article (ref. 4) dis-

cussing parallelism in numerical analysis, these methods are inherently serial as each

new search direction requires the result of the previous search. Hence, most researchers

have concentrated their efforts on developing parallel univariant minimization techniques



(see Avriel and Wilde (ref. 5) and Karp and Miranker (ref. 6)) and on modifying Powell's
method (ref. 7) with Zangwill's modification (ref. 8). (See Chazan and Miranker (ref. 9).)

The purpose of this paper is to introduce the parallel variable metric (PVM) algo-
rithm, a new technique with a high degree of parallelism for use on the new computers.
The basis of the algorithm is an observation by Powell (ref. 10, p. 93) on rank-one vari-
able metric algorithms (refs. 11, 12, and 13) concerning the form of the rank-one update
and some work by the author on an early version of the algorithm (ref. 14). If p is the
degree of parallelism, then one cycle of the parallel variable metric algorithm is defined
as follows: first, the function and its gradient are computed in parallel at p distinct
values of the independent variable; then the metric (V(n) as defined later) is modified
by p rank-one corrections; and finally, a single univariant minimization is carried
out in the Newton-like direction. Herein the following results for the PVM algorithm
are established: (1) If the function to be minimized is quadratic, defined on a finite-
dimensional space, then the iterates converge to the location of the minimum in one
cycle. (2) For strictly convex functions on a finite-dimensional space, convergence of
the iterates to the location of the minimum follows if the metrics are uniformly bounded.
(3) Convergence of the iterates to the minimum is established for the problem of mini-
mizing a strongly positive quadratic functional on a real separable Hilbert space.
(4) Finally, the results of numerical experiments involving the application of the parallel
variable metric algorithm to sample problems are included. These results are com-
pared with other investigators' results obtained by using a sequential or serial technique
(Davidon-Fletcher-Powell) on the same problems. These results indicate that the new
algorithm will exploit parallel computing capabilities to effect faster convergence (in
terms of total time required to solve the problem) than serial techniques currently in use.
In fact, those results indicate that for some problems - even when the PVM computations
are done in a serial fashion - the PVM method is competitive, in terms of the number of
function and gradient evaluations required to locate the minimum, with the Davidon-
Fletcher-Powell (DFP) method, a widely used serial method.

SYMBOLS

A self-adjoint, positive, linear operator from H into H

A-1 inverse of A

B(n),V(n),V n) sequence of linear operators

b fixed element of H
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C,V linear operator

g gradient of J

gi gradient J at x i

H real Hilbert space

I identity operator

i,j,k,q integers

J functional defined on H

Jo,M,m,Mo,m o  real numbers

n iteration number

p degree of parallelism

R set of all real numbers

rn nth residual vector, element of H

s n  direction of nth step, element of H

u,z elements of H

x element of H at which J is minimized

xn  nth iterate, element of H

x,x,xi element of H

Yi element of H defined by gi - g(xn)

o,,L scalars
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a n  step size, a real number

aj basis element of H

7 scalars defined by equations (2)

(.,.-) inner product on H

I norm on H defined as (,)1/2

Abbreviations:

DFP Davidon- Fletcher-Powell

dim H dimension of space H

PVM parallel variable metric algorithm

SPQF strongly positive quadratic functional

PARALLEL VARIABLE METRIC (PVM) ALGORITHM

Consider the problem of finding the element ~ E H, a real separable Hilbert space
with inner product (-,.) which minimizes a differentiable function J:H - R with gradi-
ent g. Let x 1 E H be the initial estimate of the location of the minimum of J and
let V(0 ) be a self-adjoint linear operator from H to H. Moreover, let Mo _ mo > 0

be such that for all x E H, mo(x,x) - (x,V(O)x) _ Mo(x,x); that is, V(0 ) is strongly

positive. If J happens to be a quadratic functional i.e., J(x) = Jo + (b,x) + (x,Ax)

with b e H,Jo E R and A strongly positive) then V( 0 ) can be interpreted as an initial

estimate of A-1. Further, let p be a positive integer which will be called the degree
of parallelism. If H is finite dimensional, it is advantageous to let p = dim H. Let

Z = j) = H represent a Schauder basis for H (ref. 15). If dim H = p < o, then let

ap+l = cl and Up+ 2 = 02 and so on. That is, for a finite-dimensional space the a.
vectors represent a recycling through the p basis vectors. The quantities J(xl )

and g(xl) are computed and the first (n = 1) and successive iterations are obtained as
follows:
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Step 1. The function and its gradient are computed at p distinct values of the

independent variable. * For i = 1, 2, ... , p let j = (n - 1)p + i and

xj = xn + j

and compute gj = g(xj) and J(xj) in a parallel fashion at the p values for xj. If

(gj,gj) = 0 then xj satisfies the necessary condition for a minimum and computation is

stopped provided J(xj) - (All other computed values of J).

Step 2. The metric is modified by p rank-one corrections. Compute the vectors

Yj =gj- g(xn)

for j = (n - l)p + i with i = 1, 2, . .. , p. Next the residual vectors must be computed.

(The reason for this terminology is explained later.)

Define

(n- 1)p+1 = V(n - 1)(n-1)p+1 - (n-1)+l

and

i-1

rj = V(n-1)yj - j - (r(n-1)p+kY)k (1)

k= (r(n-1)p+k'Y(n-1)P
+k ) (nl)pk

where j = (n - l)p + i and i = 2, 3, . . ., p. If the denominator in equation (1) is zero

for any term, that term is deleted from the summation.

Compute the p scalars

-(y,rj-1 ((y ,r ) 0)

0 ((yj,r) = 0)

np

V(n) = V(n-1) + rjB (j )  (3)

j=(n- 1)p+l

where B(J):H - H for j = (n - 1)p + i and i = 1, 2, . .. , p is defined such that for

all x EH

B(x = (x,r)rj (4)
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Step 3. A single univariant minimization is carried out in the Newton-like direc-
tion of search. Let

s n = -V(n)g(xn) (5)

where sn is called the direction of search. The step size an (a scalar) is computed

and the next iterate is defined by xn+1 = n + an s n and then J(xn+ 1) and g(xn+l) are

computed. The step size herein is chosen by means of a one-dimensional minimization.

This could be done by a number of techniques (refs. 2, 5, and 16). If Ig(xn+ 1) 1 is suf-
ficiently small, then stop; otherwise, let n = n + 1 and go to step 1.

Each pass through the algorithm (steps 1 to 3) is called a cycle. Notice that
steps 1 and 2 each entail a high degree of parallelism. Step 3 does not directly involve
any parallel computation of J or its gradient. However, in the one-dimensional mini-
mization of step 3, any parallel or pipeline structure of the computer can be exploited
(ref. 5). For most optimization problems the time required for the evaluation of the func-
tion and gradient is much greater than that required for all the other calculations of the
algorithm. It is for this reason that optimization algorithms are judged by the total num-
ber of function and gradient evaluations required to solve the problem. The parallel
computations of J and g called for in step 1 are the main time-saving element of the
algorithm, not the other parallel computations of yj,xj and, to a lesser degree, rj.

Figure 1 gives a two-dimensional illustration of the progress of the algorithm with
p = 2. The figure depicts the level curves of the function J, x I the initial estimate of
the location of the minimum, and g(x ) the gradient of J at xl. Also shown are xl
and x2 , as defined in step 1by x 1 = x 1 + l and x 2 = x 1 + o2. At x1 and x 2 the

vectors of g(xl) and g(x 2) are shown. With this information, rl, r 2 , and V(1) can
be defined. This then defines the search direction s 1 = -V( 1)g(xl). Finally, the
point x 2 (found by minimizing J(x 1 + asl) with respect to a) is shown.

PROPERTIES OF THE V(n) OPERATORS

For any real separable Hilbert space H and differentiable functional J, the fol-
lowing theorems can be established:

Theorem 1: B(J), as defined by equation (4), is a self-adjoint positive operator
(i.e., for all x eH (x,B(j)x) 0).

Proof: Clearly B(j) is linear by the linearity of the inner product. If x e H,
then (x,B()x) = (x,(x,rj)rj) = (x,rj) 2 > 0.

6



g(x 1
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Figure 1.- PVM method progress.

If x, ye H, then

(x,B(i)y) = (x,(y,rj)rj) = (y,rj)(x,rj) = (y,(x,rj)r) = (y,B(i)x)

Theorem 2: V(n ) is self adjoint for all n.

Proof: By definition, V( 0) is self adjoint; by theorem 1, the B(i) operators are

self adjoint; and by equation (3), V(n) is a finite linear combination of V( 0 ) and the

B(i) operators.

To facilitate the proof of later results, define an additional p - 1 linear operators

from H to H for each cycle n as follows:

V(n-l) = V(n-1)
0
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and

(n-I)p+i

V n-1) -Vn-1) 0=1 2 p) (6)

j=(n-1)p+l

Clearly then

V(n) = V(n - 1 )

p

where 7j and B( j ) are as in equations (2) and (4). Also, it is clear that V! n - l ) is
given by

V(n-1) Vn-1) + T B((n-1l)p+i)
S 1- 1  (n-l)p+i (7)

and equation (1) can be rewritten as

r. = V(n-1)
j i yj - j  (8)

where j = (n - 1)p + i and i = 1, 2, . . .,p. Because of the definitions of V(n), yj
and o, theorem 3 follows.

Theorem 3: If Tj 0 or rj =0, then V"n-1)yj = aj for j =(n- I)p+i for
each n, with i= 1, 2, . . ., p.

Proof: Let i be a positive integer between 1 and p and n be some positive
integer. Then, if rj = 0, 7j = 0 by definition of j so that V n - l) = V(n-l) and the
theorem is true by equation (8). Otherwise, if Tj 0 1

(n-1) (n-(j)vi)j = Vi-l yj + TjB(J)Yj (by eq. (7))

= Vf)y 1 - (rj,yj) (rj,yj)rj (by eq. (4))

= vn1j)yj - (v1)yj (by eq. (8))
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At this point it is advantageous to define a strongly positive quadratic functional

(SPQF). A functional.of the form

J(x) = Jo + (b,x) + (x,Ax) (9)

is an SPQF when Jo E R,b E H, and A is a strongly positive, self-adjoint, linear oper-

ator from H into H (i.e., there exist m, M > 0 such that m(x,x) :5 (x,Ax) = M(x,x)).

It is well known that the location of the minimum of J, denoted by R, exists and is the

equal to -A-lb. Also, the gradient of an SPQF is g(x) = Ax + b (ref. 17). Another

useful result for an SPQF is that if i = x + a and y = g(i) - g(x), then

A-ly = a (10)

Using equation (10) in equation (8) gives rj = V(n 1)yj - A-1y where j = (n - 1)p + i.

This form of rj clearly shows the reason for calling rj the residual vector; that is,

rj is the error at yj in the approximation of A- 1 by Vni-1) With these funda-

mental relations for an SPQF theorem 4 can now be established.
and uH(n-1)u and C:H -H

Theorem 4: If J is an SPQF and u E H such that A-u = V )u, and C:H - H

is a linear operator such that C = V(n-1) + B(j ) for some real i, for

j = (n - 1)p + i, then A u = Cu.

Proof: Since A- 1y = c and x = xn + o then

rj = v' 1)y - aj = V -l)yj - A-lyj

r= (vMn1)- A-'y

Since

(Vn-) - A-1)u = 0

then

(rj,u) = ((Vnl 1) - A-1)yj,u)

= (y,(V l) - A1u)

= (yj,0) = 0

9



By hypothesis

(C- A- 1)u = B(J)u

= 1 (rj,u)r

= .0.- r

=0

Since Vn-1l) n11-) + 7 B(J) the following corollaries can be obtained.

Corollary 1: If Vnl1)u = A-1 u for some u E H and J is an SPQF, then

V n-1)u = A-1u.

Corollary 2 (fundamental property of V(n-1)): If J is an SPQF and q # 0 for
all q 5 (n - l)p + i, then V(n-l)yk = A -

1
k = k for all k (n - 1)p+i.

Proof: For any fixed but arbitrary positive integer n, recall from theorem 3 that

V(n-1)
1 Y(n-1)p+l (n-1)p+l

and

n-1 l)yk = k  (k = (n - 1)p + i- 1)

Assume Vn yk = ok for all k (n - 1)p + i - 1. Since Tk * 0 , then for

k= (n - 1)p+ i, fn-1)yk = k by theorem 3. By corollary 1 of theorem 4 and the

inductive hypothesis, V k = ok for all k - (n - 1)p + i. Since n was fixed but
arbitrary, the corollary is established. Corollary 2 is most useful in later convergence
arguments and, hence, it is called the fundamental property of V(n-1)

1

Although at this point several convergence results could be established, first other
properties of the sequence of operators Vin) will be derived. For the remainder of
this section it is assumed that J is an SPQF. In that case Goldfarb (ref. 18) has
observed that Tj for j = (n - 1)p + i can be expressed as

= ((V ) - A')yj,yj)- 1  ( 0)
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Hence equation (7) can be written as

V n-1) = V(n-l) _ (11)
1 i- ((vnl) - A-) y,)

or if T = 0, Vn-1) = Vn-11)

The preceding observation yields the following theorem which is proved by induc-

tion using the Cauchy-Schwarz inequality and equation (11). A similar theorem and

proof for the serial rank-one algorithm is given in reference 19.

Theorem 5: If V(0) A - 1 (V(0) = A- 1 ) then V n) = A - 1 (Vn) <A-i) for all n

and i = 1, 2, ... , p. (V(0) A - 1 means (x,V( 0 )x) - (x,A - l x) for all x E H.)

Again, as in reference 19, by using equation (11), the Cauchy-Schwarz inequality, and

theorem 1 a condition can be established under which the V (n) and hence the V (n )

operators form a monotone sequence of self-adjoint bounded operators.

Theorem 6: If V (0 ) A - 1 (V() A- 1) then A -l 1  Vn) (  <11 . .. < Vn)=

V(n)= V(pn-l) . . . <V (0 ) forall n and i V(0) 0) 1 V

V(n) < A-)1

Corollary: If V (0 ) < A - 1 or V(0 ) = A - 1 then the V(n) operators form a mono-

tone sequence of strongly positive, self-adjoint linear operators bounded by V (0 )

and A - 1 . Moreover, there exists a strongly positive self-adjoint operator V

such that lim IV(n)x - Vx1 = 0 for all x e H.
n-oo

Proof: By the hypothesis on V( 0 ) , theorem 6, and theorem 2, it is well known

(ref. 20, p. 189) that the conclusion to the theorem follows.

If dim H is finite and p = dim H, theorem 7 can be proved.

Theorem 7: If Ti * 0 for i = 1, 2, . . .,p and dim H = p, then V ( 1 ) = A - 1

Proof: Since A is strongly positive, for each x E H there exists z E H such

that x = Az; hence, z = A-1x, and since the a vectors form a basis, there exist

scalars pi such that

p

z = i
i=l

11



Thus

p p p
x = A pi i iAoi iyi

i=1 i=1 i=

Now by the fundamental property of V( 0 )

p

V(O)y i = i  (i = 1, 2, . . .,p)

and

V( 0) = V( 1)

hence

p p
V(1)x v(1)yi - = z

i=l i=l

and also

A- 1x = z

Hence

A-ix = V(1)x

for each x E H.

If dim H is not finite then it can be shown that if Tr 0 for all j, V(n) A- 1

pointwise as in the following theorem.

Theorem 8: If 7Tj 0 for j = 1, 2, . . . and the V(n) operators are uniformly

bounded, then lim IIv(n)x - A-lx = 0.
n-oo

Proof: Let x E H; then there exists z E H such that x =Az (i.e., z = A-lx)

and z = Oiai since the a vectors form a basis for H.

i=l

Now, since A is bounded,

x = A pii iyi

i=1 i=1

12



Hence

V (n)x V(n) jyj p= jV(n) yj + V(n) jyj
j=i j=l j=np+l

np 00

= j + V(n) jYj

j=1 j=np+l

Therefore

v(n)x - A-xl = (V(n) - A- 1) Y V(n) - A-1'

j=np+l j=np+l

Because the V(n ) operators are uniformly bounded, IIV(n) - A-1ll is bounded, and
oo co

since PiYi converges, then piyi - 0 as n - -; therefore, the right-hand

i=l i=np+l
side -0 as n--o

Corollary: If V( 0) = A- 1 or V( 0 ) _ A - 1 and j * 0 for all j, then

lim II(n)x - A-1xll = 0.
n-oo

CONVERGENCE RESULTS

By utilizing the previous results, the following convergence theorems can now be

established.

Theorem 9: If J is an SPQF, Ti * 0 for i = 1, 2, . . .,p where dim H = p <

then the algorithm converges to the location of the minimum of J in one cycle.

Proof: At step 3 s 1 = -V(1)g(xl) and by theorem 7 V( 1) = A - 1 so

s 1 = -A-g(x1 ) = -A-(Ax + b) = -x 1 - A-lb

Hence, x 2 = x1 + al(-x - A-lb), and a 1 = 1 is clearly the proper choice of a; hence,

x 2 = A-b = .

13



Theorem 10: If J is an SPQF, the V(n ) operators are uniformly strongly
positive - that is, there exist ca,p> 0 such that al ~IV(n) <PI - and H is
an infinite-dimensional Hilbert space, then the algorithm converges to the loca-
tion of the minimum J.

Proof: It is sufficient to show that g(xn ) - 0 as n - -. Since the step sizes
are chosen as a result of a one-dimensional minimization, it is well known (e.g., ref. 19)
that necessarily

lim (Sg(xn)) 2
lim =
n-oo (Sn,Asn)

Hence, using the fact that A is stongly positive and the V(n) operators are uniformly
strongly positive gives

(sn,g(xn))2  (n,g(xn)2 ((n)g(xn),g(x" ) 2 , a21g(xn)114  
>, 

2  g(xn)114  2  2g(xAs >-- > g(xn 0
(Sn'Asn) M ISnlI2  M IV(n)g(xng 2 Mj IV(n)g(xn) 112 M 2 p g(xn)112 M32

Therefore jg(xn)2 -0, so g(xn) -0 and xn - -A- 1 b.

Corollary: If J is an SPQF and V( 0) < A- 1 or V( 0 ) = A- 1 , then the algorithm
converges to the location of the minimum.

Proof: By theorem 5 and the corollary to theorem 6 the V(n) operators are uni-
formly strongly positive.

Now consider strictly convex twice-differentiable functions on a finite-dimensional
Hilbert space.

Theorem 11: Suppose J is strictly convex with bounded second partial deriva-
tives. That is, if

(a) m(x,x) 5 (x,J"(x)x) = M(x,x) for all x E H where o > M _m > 0 and J"
denotes the second derivative of J (i.e., Hessian of J)

(b) J"(x) is nondecreasing along any path of nonincreasing function values
(c) For all xl, x2 E H, and a E (0,1), J(ax 1 + (1 - a)x 2) < aJ(xl) + (1 - a)J(x2).
Therefore, the iterates generated by the PVM algorithm converge to the global
minimum of J if the V(n) operators are uniformly positive definite (i.e.,
there exist positive constants a,pf such that alI 5 V(n) 5 p for n).

Proof: This theorem follows from theorem 1 in reference 18.

For a serial version of the rank-one algorithm with step size chosen by a one-
dimensional minimization, Goldfarb (ref. 18) has shown that for a strictly convex function

14



on Rn the V operators are uniformly positive definite whenever V )  _ J"(x1) or

J"(x1 ) - V( 0 ) . However, this result has not been extended to the parallel algorithm

described herein.

EXAMPLE PROBLEMS AND RESULTS

To illustrate the performance of the parallel variable metric minimization algo-

rithm, numerical experiments were conducted on several standard example problems.

Although the experiments were conducted on a serial computer, the results of the compu-

tations were used as if they had been done in a parallel fashion. Five sample functions

are used for the numerical experiments.

A simple quadratic function of three variables

fl(x,y,z) = x 2 - 2xy + 2y 2 + 5z 2

was the first function with x 1 = (1,1,1). For this example p was chosen to be 3 and,

as theorem 9 indicated, convergence was achieved in one cycle.

The second function was the well-traveled Rosenbrock's parabolic valley function

f2(xy) = (x2 _ y)2 + 0.01(x - 1)2

This is a particularly difficult function to minimize because of the long parabolic valley

y = x2 along which the minimization must travel. The traditional starting point is

(-1.2,1.0) and the minimum is located at (1,1).

The third function, known as Powell's function, is

f 3 (x 1 ,x 2 ,x 3 ,x 4 ) = (x 1 - 10x 2 )2 + 5(x 3 - x4 ) 2 + (x 2 - 2x 3 )4 + 10(x 1 - x4)4

with starting values at (3,-1,0,1). This function is particularly difficult for a variable

metric algorithm to minimize because at the minimum the Hessian is singular.

The fourth test function is called the 4-D banana or Wood's function and is defined

by

f4 (x 1 ,x 2 x3 x4 ) = 100(x 1 2 - x2 2 + 1 x1)
2 + 90(x 3

2 - x4 )2 + - x3 ) 2

+ 10.1 (x2 - 1)2 + (x 4 - 1)2 + I9.8(x2 - 1)(x 4 -1)

15



The traditional starting estimate is at (-3,-1,-3 -1). This function is difficult to mini-

mize because the quadratics x 12 - x 2 and x3 - x4 make the level surfaces banana

shaped.

The fifth function is the helical valley function defined by

f 5(x1 ,x2 ,x 3) = 100 x3 - 100)2 + x1
2 + x 2

2 - +

where

tan -1 x2Xl (X 1 > O)

Xl (x 1 < 0)

The usual starting estimate is at (-1,0,0).

On a present-day serial computer, numerical experiments were conducted in which
the PVM algorithm was applied to the five standard test functions. For these experi-
ments the convergence criterion was the absolute value of the largest component of the
gradient less than E = 10 - 7 . The basis vectors were defined as oi = 103eei, where e i
is the ith elementary vector. The one-dimensional minimization required in step 3 of
the PVM algorithm was carried out by Davidon's cubic interpolation method with initial

estimate of the step size X = min(2.,-2(J(xi) - Jmin)/(g(xi),si)), where Jmin is the

estimated minimum value of J. The degree of parallelism p was chosen to be the
number of variables in the test function and V( 0) = I.

Table 1 gives the results of these numerical experiments. For each test function
the number of cycles required to achieve convergence is listed. Also listed is the total
number of function and gradient evaluations required for convergence on the serial com-
puter. The third column of results in table 1 presents the situation as if the computa-
tions had been done on an advanced computer with stream or parallel computing capa-
bilities. Then, the computation of the p gradients in step 1 would have been done by
utilizing these capabilities. Therefore, ignoring overhead costs, these p gradients
would take essentially the same time as the computation of one gradient. It is for this
reason that in table 1 the number of evaluations for the parallel case is the same as for
the serial case minus (p - 1) times the number of cycles. Columns four and five give
measures of the accuracy of the minimization.
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TABLE 1.- RESULTS OF PVM METHOD APPLIED TO

FIVE SAMPLE PROBLEMS

Total number Total number Largest

Number of function of function Function componentwise

Function of and gradient and gradient value at error in

cycles evaluations evaluations convergence solution at

(serial) (parallel) convergence

Quadratic 1 7 5 1.5 x 10
-
21 5 x i0

-
11

Rosenbrock 13 58 45 7.7 x 10
-

16 5 x 10
-

Powell 19 118 61 4.6 x 10
-15  2 x 10

-4

4-D banana 30 185 95 9.7 x 10
- 18  2 x 10

-

Helical valley 14 75 47 1.2 x 10
-
20 6 x 10

-12

Table 2 shows the progress to the minimum of the PVM for the first three test

functions. Also recorded in table 2 is the number of function and gradient evaluations

taken with each cycle. Notice that the convergence to the minimum occurs in one cycle

for the quadratic as predicted by theorem 9. Also notice the apparently superlinear rate

of convergence for Rosenbrock's function. It is conjectured that as ai is made small

V(n) - (J,,)- 1 . This conjecture is based on the fundamental property of V(n). The

slowing convergence on Powell's function is due to the singularity of J" at the minimum.

TABLE 2.- PROGRESS PER CYCLE OF PVM ON THREE EXAMPLE PROBLEMS

Quadratic Rosenbrock's function Powell's function

Cycle Function Number of Function Number of Function Number of

vu function value function value function
value evaluations evaluations evaluations

0 6.0 1 4.8 x 10
- 1  1 8.7 x 10

2  1

1 1.5 x 10
-21  6 4.7 x 10-2 4 2.1 x 10

1  7

2 4.2 x 10
-2  5 2.1 6

3 1.9 x 10
- 2  5 2.1 x 10-1 7

4 1.6 x 10-
2  4 2.1 x 10

- 2  6

5 6.0 x 10
- 3  5 2.1 x 10

- 3  6

6 3.9 x 10
-3  4 2.1 x 10

-4  6

7 1.8 x 10-3 5 2.1 x 10
-5  6

8 6.4 x 10
- 4  4 2.1 x 10

- 6  6

9 2.6 x 10
- 4  2.1 x 10

- 7  6
5 -8

10 2.3 x 10
-5  5 2.1 x 10

-8  6

11 4.7 x 10
-8  4 2.1 x 10

-9  6

12 2.8 x 10
- 1 1  4 2.2 x 10

- 1 0  6

13 7.7 x 10
-16  4 2.4 x 10

- 1 1  6

14 3.1 x 10
- 12  6

15 4.6 x 10
- 13  6

16 8.6 x 10
- 14  6

17 1.9 x 10
- 14 6

18 1.8 x 10
- 14  6

19 4.6 x 10
- 15  7

Total 7 58 118
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Table 3 illustrates a comparison of the performance of the DFP algorithm with the

PVM algorithm on the two example functions, f 2 and f 3 . The DFP method was chosen

as the standard of comparison because of its wide use and generally it has compared

favorably with other techniques. The key factor in the performance of any minimization

technique is the number of function and gradient evaluations required to converge, as the

computation required for evaluating the function is usually much greater than that involved

in the algorithm. Table 3 lists the number of function evaluations required by the DFP

method to locate the minimum of f 2 and f 3 starting from the same initial conditions.

These results have been obtained by other investigators (refs. 21 and 22). Also listed in

table 3 are results on these problems reported by Jacobson and Oksman (ref. 23) for a

DFP subroutine. Finally, in table 3 the performance of the parallel variable metric

method is given for two cases. In the first case, the method is used on a serial com-

puter, hence the operations in step 1 (i.e., gradient evaluations) are not done in parallel.

For the second case, it is assumed that the operations in step 1 are carried out in par-

allel. Hence the p gradient evaluations of step 1 will require only the time to carry

out one evaluation. Thus the entry in table 3 for the parallel case is merely the same as

that for the serial case minus (p - 1) times the number of cycles.

TABLE 3.- COMPARISON OF NUMBER OF FUNCTION EVALUATIONS REQUIRED TO

ACHIEVE CONVERGENCE FOR PVM WITH RESULTS OF OTHER RESEARCHERS

Number of function evaluations required to
Method achieve convergence for -

Rosenbrock's function Powell's function

Davidon- Fletcher-Powell (Greenstadt) 192 134 to f = 10-11

DFP (Straeter) 101 Not reported

DFP (Jacobson) 165 80 to f = 10-8

63 to f= 10-8
PVM in serial 58 81 to f = 10 - 11

118 to f = 10 - 15

PVM in parallel 44 61
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CONCLUDING REMARKS

An algorithm designed to exploit the parallel computing or vector streaming (pipe-

line) capabilities of computers with these special features has been presented. Several

properties of this algorithm were established herein. In addition, the convergence of the

iterates to the solution has been proved for a quadratic functional on a real separable

Hilbert space; in fact, for a finite-dimensional space the convergence is achieved in one

cycle, when the degree of parallelism equals the number of independent variables.

Results of numerical experiments indicate that the new algorithm will exploit the parallel

or pipeline computing capabilities of the new computers to effect faster convergence than

serial techniques currently in use. In fact, the experiments indicated that even when the

computations are done serially, the new algorithm is very competitive with the widely

used Davidon- Fletcher- Powell technique.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., September 6, 1973.
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